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Probability models

1.1 Observation, experiments and models

Science proceeds by endless repetition of a three-stage process,

1. observation;

2. building a model to describe (or ‘explain’) the observations; and

3. using the model to predict future observations. If future observations
are not in accord with the predictions, the model must be replaced
or refined.

In quantitative science, the models used are mathematical models. They
fall into two main groups, deterministic models and probability (or stochas-
tic) models. It is the latter which are appropriate in epidemiology, but the
former are more familiar to most scientists and serve to introduce some
important ideas.

DETERMINISTIC MODELS

The most familiar examples of deterministic models are the laws of classical
physics. We choose as a familiar example Ohm’s law, which applies to the
relationship between electrical potential (or voltage), V', applied across a
conductor and the current flowing, I. The law holds that there is a strict
proportionality between the two — if the potential is doubled then the
current will double. This relationship is represented graphically in Fig. 1.1.

Ohm’s law holds for a wide range of conductors, and simply states that
the line in Fig. 1.1 is straight; it says nothing about the gradient of the
line. This will differ from one conductor to another and depends on the
resistance of the conductor. Without knowing the resistance it will not be
possible to predict the current which will flow in any particuler conductor.
Physicists normally denote the resistance by R and write the relationship
as

However, R is a different sort of quantity from V or I. It is a parameter —
a number which we must fix in order to apply the general law to a specific
case. Statisticians are careful to differentiate between observable variables
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Fig. 1.1. A deterministic model: Ohm’s law.

(such as V' and I) and parameters (such as R) and use Greek letters for
the latter. Thus, if Ohm were a modern statistician he would write his law
as

I=—

p

In this form it is now clear that p, the resistance, is a parameter of a simple
mathematical model which relates current to potential. Alternatively, he
could write the law as

I =~V

where 7 is the conductance (the inverse of the resistance). This is a simple
example of a process called reparametrization — writing the model differ-
ently so that the parameters take on different meanings.

STOCHASTIC MODELS

Unfortunately the phenomena studied by scientists are rarely as predictable
as is implied by Fig. 1.1. In the presence of measurement errors and un-
controlled variability of experimental conditions it might be that real data
look more like Fig. 1.2. In these circumstances we would not be in a po-
sition to predict a future observation with certainty, nor would we be able
to give a definitive estimate of the resistance parameter. It is necessary
to extend the deterministic model so that we can predict a range of more
probable future observations, and indicate the uncertainty in the estimate
of the resistance.

Problems such as this prompted the mathematician Gauss to develop
his theory of errors, based on the Gaussian distribution (often also called
the Normal distribution), which is the most important probability model
for these problems. A very large part of statistical theory is concerned with
this model and most elementary statistical texts reflect this. Epidemiology,
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Fig. 1.2. Experimental/observational errors.

however, is more concerned with the occurrence (or not) of certain events in
the natural history of disease. Since these occurrences cannot be described
purely deterministically, probability models are also necessary here, but
it is the models of Bernoulli and Poisson which are more relevant. The
remainder of this chapter discusses a particularly important type of data
generated by epidemiological studies, and the nature of the models we use
in its analysis.

1.2 Binary data

Many epidemiological studies generate data in which the response mea-
surement for each subject may -take one of only two possible values. Such
a response is called a binary response. Two rather different types of study
generate such data.

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

In a cohort study a group of people are followed through some period of
time in order to study the occurrence (or not) of a certain event of interest.
The simplest case is a study of mortality (from any cause). Clearly, there
are only two possible outcomes for a subject followed, say, for five years —
death or survival. »

More usually, it is only death from a specified cause or causes which
is of interest. Although there are now three possible outcomes for any
subject — death from the cause of interest, death from another cause, or
survival — such data are usually dealt with as binary data. The response is
taken as death from cause of interest as against survival, death from other
causes being treated as premature termination of follow-up. Premature
termination of follow-up is a common feature of epidemiological and clinical
follow-up studies and may occur for many reasons. It is called censoring, a
word which reflects the fact that it is the underlying binary response which
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we would have liked to observe, were it not for the removal of the subject
from observation. _

In incidence studies the event of interest is new occurrence of a spec-
ified disease. Again our interest is in the binary response (whether the
disease occurred or not) although other events may intervene to censor our
observation of it.

For greater generality, we shall use the word failure as a generic term
for the event of interest, whether incidence, mortality, or some other (unde-
sirable) outcome. We shall refer to non-failure as survival. In the simplest
case, we study N subjects, each one being followed for a fixed time in-
terval, such as five years. Over this time we observe D failures, so that
N — D survive. We shall develop methods for dealing with censoring in
later chapters.

CROSS-SECTIONAL PREVALENCE DATA

Prevalence studies have considerable importance in assessing needs for
health services, and may also provide indirect evidence for differences in-in-
cidence. They have the considerable merit of being relatively cheap to carry
out since there is no follow-up of the study group over time. Subjects are
simply categorized as affected or not affected, according to agreed clinical
criteria, at some fixed point in time. In a simple study, we might observe
N subjects and classify D of them as affected. An important example is
serological studies in infectious-disease epidemiology, in which subjects are
classified as being seropositive or seronegative for a specified infection.

1.3 The binary probability model

The obvious analysis of our simple binary data consisting of D failures
out of N subjects observed is to compute the proportion failing, D/N.

However, knowing the proportion of a cohort which develops a disease, or .

dies from a given cause, is of little use unless it can be assumed to have a
wider applicability beyond the cohort. It is in making this passage from
the particular to the general that statistical models come in. One way
of looking at the problem is as an attempt to predict the outcome for a
new subject, similar to the subjects in the cohort, but whose outcome is
unknown. - Since the outcome for this new subject cannot be predicted
with certainty the prediction must take the form of probabilities attached
to the two possible outcomes. This is the binary probability model It
is the simplest of all probability models and, for the present, we need
to know nothing of the properties of probability save that probabilities
are numbers lying in the range 0 to 1, with 0 representing an impossible
outcome and 1 representing a certain outcome, and that the probability
of occurrence of either one of two distinct outcomes is the sum of their
individual probabilities (the additive rule of probability).
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F (Failure)

S (Survival)

_Fig. 1.8. The binary probability model.

THE RISK PARAMETER

The'binary probability model is illustrated in Figure 1.3. The two outcomes
are labelled F (failure) and S (survival). The model has one parameter, 7,
the probability of failure. Because the subject must either fail or survive,
the sum of the probabilities of these two outcomes must be 1, so the proba-
bility of survival is 1 — 7. In the context where 7 represents the probability
of occurrence of an event in a specified time period, it is usually called the
risk.

THE ODDS PARAMETER

An important alternative way of parametrizing the binary probability model
is in terms of the odds of failure versus survival. These are

m:(l—n),

which may also be written as

1—-m

It is convenient to omit the : 1 in the above expression and to measure the

odds by the fraction
T

1—7m"

This explains why, although the word odds is plural, there is often only
one number which measures the odds.

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a)
0.75, (b) 0.50, () 0.25.

In general the relationship between a probability = and the corresponding
odds Q is

gt
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This can be inverted to give

= L 1 =
Tire T T T ire

Exercise 1.2. Calculate the probability of failure when Q, the odds of F to S is
(a) 0.3, (b) 3.0.

RARE EVENTS

In this book we shall be particularly concerned with rare events, that is,
events with a small probability, =, of occurrence in the time period of
interest. In this case (1 — ) is very close to 1 and the odds parameter and
the risk parameter are nearly equal:

Q=T

This approximation is often called the rare disease assumption, but this is
a misleading term, since even the common cold has a small probability of
occurrence within, say, a one-week time interval.

1.4 Parameter estimation

Without giving a value to the parameter 7, this model is of no use for
prediction. Our next problem is to use our observed data to estimate its
value. It might seem obvious to the reader that we should estimate 7 by
the proportion of failures, D/N. This corresponds to estimating the odds
parameter {2 by D/(N — D), the ratio of failures to survivors.

It might also seem obvious that we should place more reliance on our
estimate (and upon any predictions bw.sed on it) if N is 1000 than if N is
10. The formal statistical theory which provides a quantitative justification
for these intuitions will be discussed in later chapters.

1.5 1Is the model true?

A model which states that every one of a group of patients has the same
probability of surviving five years will seem implausible to most clinicians.
Indeed, the use of such models by statisticians is a major reason why some
practitioners, brought up to think of each patient as unique, part company
with the subject!

The question of whether scientific models are true is not however, a
sensible one. Instead, we should ask ourselves whether our model is useful
in describing past observations and predicting future ones. Where there re-
mains a choice of models, we must be guided by the criterion of simplicity.
In epidemiology probability models are used to describe past observations
of disease events in study cohorts and to make predictions for future indi-
viduals. If we have no further data which allows us to differentiate subjects

SOLUTIONS 9

in the cohort from one another or from a future individual, we have no op-
tion save to assign the same probability of failure to each subject. Further
data allows elaboration of the model. For example, if we can identify sub-
jects as exposed or unexposed to some environmental influence, the model
can be extended to assign different probabilities to exposed and unexposed
subjects. If additionally we know the level of exposure we can extend the
model by letting the probability of failure be some increasing function of
exposure.

In this book we shall demonstrate the manner in which more compli-
cated models may be developed to deal with more detailed data. The
binary model has been.our starting point since it is the basic building brick
from which more elaborate models are constructed.

Solutions to the exercises

1.1 (a) Odds = 0.75/0.25 = 3.
(b) Odds = 0.50/0.50 = 1.
(c) Odds = 0.25/0.75 = 0.3333.

1.2 (a) Probability = 0.3/1.3 = 0.2308.
(b) Probability = 3/4 = 0.75.





